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Abstract
Long-distance behaviour of the Casimir–Polder–Lifshitz force between an
atom and the surface of a substrate is investigated. When the temperatures
of the substrate and the environment are different, the new decay law 1/z3

of the force at large distances is discovered, which is slower than at thermal
equilibrium. The force is of a quantum nature and attractive or repulsive
depending on whether the temperature of the substrate is higher or lower than
that of the environment. A transparent derivation of this law is presented. It is
based on a picture of evanescent waves, created in vacuum by the black-body
radiation impinging on the surface near the angle of total reflection. Some
new experimental possibilities of the measurement of the forces are discussed:
oscillations of a Bose–Einstein condensate near the surface, Bloch oscillations
of fermions in an optical lattice and phase evolution of a BEC in a double-well
trap.

PACS numbers: 34.50.Dy, 42.50.Vk, 39.20.+q, 03.75.Kk

(Some figures in this article are in colour only in the electronic version)

1. Introduction: surface–atom forces in equilibrium

The study of the force felt by an atom near a surface has recently become a popular subject
of research (see, for example, [1, 2] and references therein). These studies are motivated both
by the possibility of nanotechnological applications [3] as well as by the search for stronger
constraints on hypothetical non-Newtonian forces [4, 5]. Experimental and theoretical research
has recently been focused on the forces acting on ultracold atomic gases, including atomic
beams [6–9], Bose–Einstein condensates [2, 10–12] and degenerate Fermi gases [13].
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At thermal equilibrium the force can be presented in the form

F eq(T , z) = F0(z) + F
eq
th (T , z) (1)

where we have separated the contribution F0(z) arising from the T = 0 zero-point fluctuations
and the one arising from the thermal fluctuations. At short distances z (typically less than
fractions of microns), the zero-point component behaves like 1/z4 and is the analogue of
the van der Waals–London interatomic force. At larger distances, the relativistic retardation
effects give rise to a different 1/z5 dependence characterizing the so-called Casimir–Polder
regime [14, 15]:

F0(z)z→∞ = −3

2

h̄cα0

πz5

ε0 − 1

ε0 + 1
φ(ε0). (2)

(For definition of the function φ(ε0) see [2].)
The second component of the force is due to the thermal fluctuations of the electromagnetic

field. This effect was first considered by Lifshitz [16]. We will refer to it as to the Lifshitz
force. At distances larger than the thermal photon wavelength λT = h̄c/T (corresponding to
∼7.6 µm at room temperature) this force decays, at thermal equilibrium, like 1/z4 (we use
units with kB = 1):

F
eq
th (T , z)z→∞ = −3

4

T α0

z4

ε0 − 1

ε0 + 1
. (3)

The explicit behaviour of the force (1) at all distances has been recently investigated in [2].
The asymptotic law (3) is reached at distances larger than the thermal wavelength λT . In

the above equations, α0 (=47.3 × 10−24 cm3 for Rb atoms) and ε0 are, respectively, the static
polarizability of the atom and the static dielectric function of the substrate. It is worth noting
that only the static optical properties enter the asymptotic laws (2) and (3), the corresponding
dynamic effects becoming important only at shorter distances. It is also worth noting that
the asymptotic behaviour of the thermal force has a classical nature, being independent of the
Planck constant. In the present paper, we are interested in the thermal component of the force.
The Lifshitz force was originally evaluated at full thermodynamic equilibrium. A non-trivial
problem is the study of the force out of thermal equilibrium, when the temperatures of the
substrate and of the surrounding walls located at large distances (hereafter called environment
temperature) do not coincide. The problem is important both from an experimental point of
view, due to the possibility of tuning the two temperatures independently, and for a better
understanding of the interplay between zero-point and thermal-fluctuation effects. A first
important investigation of the surface–atom force out of thermal equilibrium was carried out
by Henkel et al [17] who calculated the force, assuming that the dielectric substrate is at finite
temperature while the environment temperature is zero, and investigated the behaviour of the
force at short distances. It has been shown in [18] that, out of thermal equilibrium, the force
acting on the atom exhibits a new asymptotic behaviour, characterized by a 1/z3 decay at large
distances.

2. Non-equilibrium surface–atom forces

The purpose of the present paper is to discuss the calculation of the non-equilibrium forces and
in particular to investigate its behaviour at large distances. The theory which we develop is a
generalization of the equilibrium Lifshitz theory. In this theory, a fluctuating electromagnetic
field is created by sources—fluctuating polarization of the media. Correlation functions of the
Fourier components of quantum operators of these fluctuating dipole moments are, according
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to the fluctuation–dissipation theorem,

1

2

〈
P̂ fl

i (r, ω) P̂ fl
k (r′, ω′) + P̂ fl

k (r′, ω′)P̂ fl
i (r, ω)

〉

= 1

2π
h̄ε′′(r, ω)

(
1

2
+

1

eh̄ω/T − 1

)
δ(ω + ω′)δikδ(r − r′). (4)

Transition to the particular case of a transparent medium must be produced in this theory by
the limiting procedure ε′′ → 0 in the final solution. For the first time equation (4) was obtained
by Rytov [19]. He assumed the δ-correlations of sources and matched the coefficient to obtain
correct formulae for black-body radiation outside the bodies. Landau and Lifshitz derived (4)
using the fluctuation–dissipation theorem [20].

Due to the presence of the δ(r − r′) factor these fluctuations are local. Fluctuations of
the sources at different points of the material are non-coherent. This permits us to assume
that in the non-equilibrium situation, when temperature T is different at different points, in
our case in two half-spaces, the sources’ correlations are given by the same equations. I must
emphasize that this assumption, even being quite reasonable, is still a hypothesis, which is
useful for both further theoretical investigation and experimental verification.

Polder and Van Hove calculated, using this approach, the radiative heat transfer between
two bodies with different temperatures [21].

Let us consider an atom with dielectric polarizability α(ω) placed in vacuum at
distance z from the flat surface of a substrate made of a material with dielectric function
ε(ω) = ε′(ω) + iε′′(ω). We choose a coordinate system with the xy plane coinciding with the
interface and the z-axis such that the substrate occupies the region with z < 0 and the vacuum
the region with z > 0. We also assume that the substrate is locally at thermal equilibrium at a
temperature TS which can differ from the environment temperature TE, the global system being
out of thermal equilibrium, but in a stationary state. The total electromagnetic field will be
in general the sum of the radiation produced by the substrate and the one of the environment.
The latter radiation will be partially absorbed and reflected from the substrate. In typical
experiments with ultracold atomic gases, the environment temperature is determined by the
chamber containing the substrate and the trapped atoms. We again present the force as the
sum of the zero-temperature contribution F0(z) and of a thermal contribution which, however,
is different from F

eq
th if TS �= TE:

F neq(TS, TE, z) = F0(z) + F
neq
th (TS, TE, z). (5)

We introduce now the main assumption of the theory. We will treat the atoms as being
at zero temperature in the sense that the surrounding radiation is not able to populate their
excited states which are assumed to be located at energies h̄ωat much higher than the thermal
energy:

TS, TE � h̄ωat. (6)

This condition is very well satisfied at ordinary temperatures. For example, the first optical
resonance of Rb atoms corresponds to 1.8 × 104 K.1 It is worth noting that at T ∼ h̄ωat the
majority of atoms would be ionized.

Inequality (6) results in important simplifications. First of all, this means that we can
substitute the atomic dielectric polarizability α(ω) with its real static value α (0) ≡ α0 in all
equations related to the thermal radiation. Further we can neglect thermal fluctuations of the

1 Ground-state energy levels of alkali atoms are split into hyperfine components and, in the presence of a magnetic
field, into Zeeman components. Electric dipole transitions between these levels are forbidden and they are not
important for optical properties. However, their role is worth more careful investigation. The contribution to the force
due to the magnetic dipole transitions between such levels was estimated for T = 0 in [22].
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dipole moment of the atom, because according to (4) these fluctuations are created by the
imaginary part of polarizability α′′. In these conditions, the thermal part of the force, acting
on the atom, can be presented in the form

F
neq
th (T , 0, z) = 4πα0∂zUEl (7)

where UEl = 〈E2〉/8π is the thermal component of the electric energy density in vacuum,
calculated in the absence of the atom. Note that the force (7) is entirely similar to the dipole
force acting on an atom in the presence of an inhomogeneous laser field.

We can now discuss the behaviour of the force when the system is not in equilibrium. It
is enough to consider the case of a substrate at finite temperature (TS = T �= 0) in the absence
of the environment radiation (TE = 0). In order to discuss the general case TS �= TE �= 0, we
can use the additivity property of the thermal force which can be written, in general, as the
sum of two contributions:

F
neq
th (TS, TE, z) = F

neq
th (TS, 0, z) + F

neq
th (0, TE, z), (8)

produced, respectively, by the radiation of the substrate and of the environment. Equation (8)
immediately follows from the locality of the radiation sources (4) and linearity of the Maxwell
equations. The full surface–atom force out of equilibrium can be finally written in the
convenient form

F neq(TS, TE, z) = F eq(TE, z) + F
neq
th (TS, 0, z) − F

neq
th (TE, 0, z) (9)

where the equilibrium force F eq(T , z) is given by (1).
To calculate the force (7), one must solve the Maxwell equations for electric field in terms

of Pi using corresponding Green’s function and perform averaging of E2 with the help of (4).
This problem was solved by Henkel et al [17] who obtained the result

F
neq
th (T , 0, z) = h̄

2π2
α0

∫ ∞

0
dω

ε′′(ω)

eh̄ω/T − 1
Re

[∫
VS

Gik[ω; r, r1]∂zG
∗
ik[ω; r, r1] d3r1

]
(10)

for the thermal contribution to the force2. In (10), Gik is the retarded Green’s function of the
electromagnetic field. The variable r1 should be integrated on the volume VS occupied by
the substrate which provides the source of the thermal radiation. The argument r defines the
position of the atom outside the substrate.

Explicit calculation of (10) demands lengthy algebra. It can be performed by introducing
the Fourier transform gik[ω; k⊥, za, zb] of the Green’s function Gik[ω; ra, rb] where k⊥ is
the component of the electromagnetic wave vector parallel to the interface. The detail of
calculations will be published elsewhere. I do not reproduce here the final equation for the
force (10), see equation (8) in [18] and Antezza’s contribution in this volume. Instead I will
discuss the large z behaviour of the out of equilibrium force. The most striking result of
the non-equilibrium theory is that this behaviour is completely different from the equilibrium
case. As shown in [18], the force (10) exhibits the non-trivial asymptotic behaviour

F
neq
th (T , 0, z)z→∞ = − h̄α0

z3πc

∫ ∞

0
dω

ω

eh̄ω/T − 1
f (ω). (11)

Thus the force exhibits a slower 1/z3 decay with respect to the one holding at thermal
equilibrium where it decays like 1/z4 (see (3)). In the above equation, we have introduced the
function

f (ω) = (|ε(ω) − 1| + (ε′(ω) − 1))
1
2

2 + |ε(ω) − 1|√
2|ε(ω) − 1| (12)

2 In the general case, the thermal force also contains a repulsive coordinate-independent wind part proportional to
α′′(ω) and produced by the absorption of photons by the atom. Due to condition (6), this wind contribution can be
ignored.
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Figure 1. Surface–atom force F neq(z), calculated from (9), for different temperatures of the
substrate and the environment. From [18].

which depends on the optical properties of the substrate. For temperatures much smaller than
the energy h̄ωc, where ωc is the lowest characteristic frequency of the dielectric substrate, we
can replace f (ω) with its low-frequency limit (ε0 + 1)/

√
ε0 − 1. The force felt by the atom

then approaches the asymptotic limit

F neq(T , 0, z)z→∞ = −π

6

α0T
2

z3ch̄

ε0 + 1√
ε0 − 1

, (13)

holding at low temperature and at distances z  λT/
√

ε0 − 1, where λT is the thermal photon
wavelength. This condition demands larger z for small ε0 − 1. In contrast, in the limit ε0 → 1
at fixed z the force tends to zero as it must. Note that ε0 = 9.4 and 3.83 for the sapphire and
silica substrates correspondingly.

Using (9) one can easily generalize equation (13) for the case when the environment has
the finite temperature TE. Indeed, at z → ∞ the first term in (9) is small in comparison to the
other and we obtain

F neq(TS, TE, z)z→∞ = −π

6

α0
(
T 2

S − T 2
E

)
z3ch̄

ε0 + 1√
ε0 − 1

. (14)

Equation (14) shows that, at large distances, the new force is attractive or repulsive
depending on whether the substrate temperature is higher or smaller than the environment
one. Furthermore, it exhibits a stronger temperature dependence with respect to equilibrium
and explicitly contains the Planck constant.

In figure 1 we show the results for the force obtained starting from (10) as a function
of the distance from the surface for different choices of TS and TE. Calculations have been
done for a sapphire substrate and for rubidium atoms. For F eq(T , z), we have used the
predictions of [2]. The figure clearly shows that the thermal effects out of equilibrium (solid
lines) are sizable , thereby providing promising perspectives for future measurements of the
surface–atom force at large distances. In particular, in order to increase the attractive nature
of the force it is much more convenient to heat the substrate by keeping the environment
at room temperature (lower solid line) rather than heating the whole system (dashed line).
When TS < TE (upper solid line), the force exhibits a characteristic change of sign reflecting
a repulsive nature at large distances in accordance with (14). We have presented the results
for the force. However, it is useful to also calculate the potential and the gradient of the force
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because the corresponding predictions can be of interest for different types of experiments
with ultracold gases. Experiments based on the study of the centre of mass oscillation of a
trapped gas are sensitive to the gradient of the force [2]. The corresponding frequency shifts
produced by the surface–atom interaction have been recently measured [12] in conditions of
thermal equilibrium in agreement with the predictions of theory [2]. Conversely, experiments
based on Bloch oscillations are sensitive to the force itself [23, 13]. Finally, one can also think
of interference experiments with Bose–Einstein condensates in a double-well potential. For
large separations between the wells, the positions of the corresponding interference fringes
are sensitive to the potential [24]. We will discuss some details of corresponding experiments
in section 4.

Equation (14) holds for a dielectric substrate where ε0 is finite. For a metal, if one uses
the Drude model, one has ε′′(ω) = 4πσ/ω with the real part ε′(ω) remaining finite as ω → 0
so that one finds f (ω) → √

ε′′(ω)/2 = √
2πσ/ω. At low temperatures, one obtains then a

different temperature dependence

F neq(TS, TE, z)z→∞ = −α0ζ(3/2)
√

σ
(
T

3/2
S − T

3/2
E

)
z3c

√
2h̄

(15)

where ζ(3/2) ≈ 2.61 is the Riemann function. Note that from this point of view the Lifshitz
1/z4 asymptotic (3) is a result of a non-trivial cancellation of the non-equilibrium 1/z3 terms.

3. Direct derivation of the non-equilibrium asymptotic law

In this section, I will give a simple and transparent derivation of the non-equilibrium asymptotic
law (13). I hope that this derivation helps to understand the physical meaning of the non-trivial
asymptotic behaviour of the non-equilibrium force. Of course, this derivation cannot substitute
the full theory presented in the previous section. We assume from the very beginning that
one can neglect absorption and dispersion of the dielectric function of the substrate (and, of
course, of the atom polarizability) and consider the asymptotic limit z → ∞. The derivation
is based on the next three obvious observations:

1. In the case of the zero-temperature environment and in the absence of absorption in
the substrate, the thermal radiation is the black-body radiation, which comes from z = −∞.
The radiation cannot be created on finite distances because there is no absorption and cannot
come from z = +∞ because the half-space z > 0 is cold.

2. The force can be created only by the evanescent waves, whose amplitude decreases
when z → +∞. Hence only the radiation, which undergoes the total reflection, contributes
to the force. (Propagating waves create the ‘energy wind’, which does not contribute to the
force in the absence of absorption by the atom.)

3. However, asymptotically the incident waves are most important, which come nearly at
the angle θr of the total reflection, sin θr = 1/

√
ε0. These waves decay slowly at positive z.

At z < 0, one has the incident wave

E0 = Re Ê0 ei(k0·r−ωt). (16)

(In this section, quantities with ‘hats’ ˆ are the complex amplitudes of fields.) One has

k0={k⊥, k0z}; k2
0 = ω2ε0/c

2, k0z =
√

ω2ε0/c2 − k2
⊥ (17)

where k⊥ is the projection of the wave vector on the substrate surface and ε0 is, as before, the
static dielectric function of the substrate. According to the observation 2, we must consider
only the case of total reflection. Correspondingly, we assume that ω

√
ε0/c > k⊥ > ω/c.

There is also the reflected wave E1 = Re Ê1 exp(i(k⊥ · r⊥ − zk0z−ωt)). At z > 0, one has
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the refracted wave E = Re Ê exp(i(k⊥ · r⊥−ωt)) eizkz . We consider only the evanescent
refracted waves with kz = iκ:

E = e−κz Re Ê exp(i(k⊥ · r⊥−ωt)), κ =
√

k2
⊥ − ω2/c2. (18)

The angle of total reflection corresponds to κ = 0, i.e., k0z = ω
√

ε0 − 1/c. Actually, we must
keep κ �= 0 only in the exponential factor (18).

One can establish relations between Ê0 and Ê using the textbook Fresnel equations. The
relations are different for different polarizations of the fields.

Case I: TE waves. Electric field E is perpendicular to the plane of incidence. One can use
general equations from the textbook [20], section 66. Equation (66.4) gives for the refracted
field amplitudes:

ÊTE = 2k0z

k0z + kz

Ê0TE = 2k0z

k0z + iκ
Ê0TE. (19)

At the angle of total reflection, i.e., at κ → 0, we have simply ÊTE = 2Ê0TE. This gives the
relation between squares of fields (averaged with respect to time):

E2
TE = 1

2 |ÊTE|2 e−2κz = 4E2
0TE e−2κz. (20)

Case II: TM waves. Magnetic field H is perpendicular to the plane of incidence.
Equation (66.6) from [20] gives instead (19) ĤTM = 2k0z

k0z+ε0kz
Ĥ0TM ≈ 2Ĥ0TM or H 2

TM =
4H 2

0TM e−2κz. According to the properties of plane waves3:

H 2
TM = E2

TM, H 2
0TM = ε0E

2
0TM. (21)

Thus, we have in the TM case

E2
TM = 4ε0E

2
0TM e−2κz. (22)

Now we can calculate the thermal average of E2
TE and E2

TM, taking into account that E0 is the
field of the black-body radiation. Energy of the black-body radiation in the interval of wave
vectors dk0 is

UBB
dk0

= 2 ×
ε0

〈
E2

0

〉
dk0

8π
= h̄ω

eh̄ω/T − 1

2 dk0

(2π)3 , (23)

where the factor 2 is due to the presence of the magnetic energy and both polarizations give
the same contributions

〈
E2

0TE

〉
dk0

= 〈
E2

0TM

〉
dk0

= 〈
E2

0

〉
dk0

/
2. This means that one can perform

averaging by substituting

E2
0TE, E2

0TM → 2π

ε0

h̄ω

eh̄ω/T − 1

2 dk0

(2π)3
(24)

into equations (20) and (22) and integrating over the total reflection region. This gives〈
E2

TM

〉
8π

= ε0

〈
E2

TE

〉
8π

= 2
∫

k⊥>ω/c

e−2κz h̄ω

eh̄ω/T − 1

dk0

(2π)3
. (25)

Thus, the density of the energy of the electric field in vacuum UEl ≡ 〈E2〉/8π =〈
E2

TE + E2
TM

〉
/8π is

UEl = ε0 + 1

ε0

∫ k⊥=ω
√

ε0/c

k⊥=ω/c

e−2κz h̄ω

eh̄ω/T − 1

2 dk0

(2π)3
. (26)

3 The first equation (21) is valid for the propagating plane waves. The corresponding equation for the evanescent
waves is (1 + 2κ2c2/ω2)H 2

TM = E2
TM. It is reduced to (21) at κ → 0.
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The element dk0 can be written in the cylindrical coordinates as dk0 = 2πk⊥dk⊥ dk0z. Then,
taking into account that k2

⊥ = κ2 + ω2/c2, we have

dk0z = ε0ω dω

c2k0z

≈ ε0 dω

c
√

ε0 − 1
, k⊥dk⊥ = κ dκ, dk0 = 2π

ε0 dω κ dκ

c
√

ε0 − 1
(27)

because for small κ we can change in the denominator k0z ≈ ω
√

ε0 − 1/c. Equation (26)
takes the form

〈E2〉
8π

= ε0 + 1√
ε0 − 1

1

2π2c3

∫ ∞

0

h̄ω

eh̄ω/T − 1

∫ (
√

ε0−1)ω/c

0
e−2zκκ dκ dω. (28)

At z → ∞, only small values of κ ∼ 1/z are important. Thus, if

z  c/(ω
√

ε0 − 1) ∼ h̄c/(T
√

ε0 − 1) (29)

we can integrate with respect to κ from 0 to ∞. Finally, the integrations give

UEl = 〈E2〉
8π

= 1

48

ε0 + 1

z2
√

ε0 − 1

T 2

ch̄
. (30)

Using equation (7) for the force in terms of ∂zUEl, we recover (13).
The dependence of the electric energy UEl on temperature and distance can be physically

understood by noting that, as is obvious from (27) and (28), the main contribution to the
zth-dependent part of UEl arises from the black-body radiation impinging on the surface in
a small interval of angles, of the order of (λT/z)2, near the angle of total reflection. This
radiation creates slowly damping evanescent waves in vacuum. This means that the energy
of the electric field in the vacuum UEl is of the order of (c2h̄2/T 2z2)UBB, where UBB ∝ T 4

is the density of energy of the black-body radiation, in accordance with (30). As a result,
F neq(T , 0, z) turns out to be, in accordance with (13), of the order of

(
λ2

T

/
z3

)
UBB. Note that

in the equilibrium case, when the temperature of the environment is equal to the temperature
of the substrate, the asymptotic term (30) is cancelled by the contribution of the radiation from
the environment. At condition (29), the waves incident on the surface under the grazing angles
are important.

4. Experiments with trapped ultracold gases: new possibilities

In this section, we give a short review of some new experimental devices which have been
used or can be used for measurements of the atom–surface forces.

4.1. Oscillations of a Bose–Einstein condensate near a surface

For the first time oscillations of a BEC were used to measure forces between atoms and a
surface in [11].

Systematic investigation of the forces between atoms and substrate was performed in [12].
The scheme of the experiment is shown in the upper part of figure 2. A cigar-shaped condensate,
containing 1.4 × 105 of 87Rb atoms in |F = 1,mF = −1〉 ground state, was trapped in a
magnetic trap with frequencies ωz = 6.4 Hz in the axial direction and ωx = ωy = 228 Hz
in the radial directions. The Thomas–Fermi radius was about 2.4 µm. The condensate was
placed near the fused silica surface with z-axis parallel to the surface and x-axis in the direction
of the gravity force. The presence of the Casimir force F resulted in the frequency shift, which
for a thin condensate can be calculated as

γx ≡ ωx − ω′
x

ωx

� 1

2ω2
xm

∂xF. (31)

In real conditions, the gradient of the force must be averaged over the condensate size [2].
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Figure 2. Measurement of the forces using dipole oscillations of a condensate. (a) Aspect ratio
of the condensate and its position relative to the surface. (b) Typical data showing the condensate
positions after expansions. From [12].

The distance between the condensate and the surface was measured by an absorption
imaging technique. The atoms were illuminated with a beam perpendicular to the long axis
of the condensate. This beam impinges on the surface with a slight grazing incidence angle
of ∼2.4◦ such that when the condensate is within ∼100 µm of the surface, both a direct
absorption image and a reflected absorption image of the condensate appear. Measuring the
distance between these images allows us to determine the distance between the condensate
and the surface.

The typical experiment was performed as follows. To excite a condensate dipole
oscillation, a pulse of an oscillating magnetic field was applied with the frequency near
the radial trap frequency. After some ‘waiting time’, the atoms were transferred by a microwave
field into the |F = 2,mF = −2〉 state, which is antitrapped, i.e., atoms in this state were
pushed away from the magnetic field minimum. As a result of the action of the gravitational
field and the antitrapping, the condensate dropped from the surface and expanded. After 5 ms
of this expansion the position of the condensate was imaged through absorption. Repeating
this procedure with different waiting times permits us to reconstruct the oscillations. The
antitrapped expansion acts to amplify the oscillation amplitude by approximately 20-fold,
permitting straightforward measurement of the oscillation in expansion (see figure 2(b)).

The results of the measurement of the Casimir–Polder force from the surface are shown
in figure 3. One can see good agreement with the predicted Casimir–Polder force from
a fused silica surface, but not with the extrapolation of the van der Waals–London force.
Unfortunately, it was impossible in these experiments to have the experimental resolution to
discern between the T = 0 K Casimir–Polder force and the T = 300 K case. Looking for the
thermal effects at an elevated temperature, however, appears promising; see figure 3 for the
prediction for T = 600 K. At this temperature, the predicted γx is larger than nearly all of data.
Thus, a measurement at this temperature should yield a significantly larger signal. The effect
can be increased even more in non-equilibrium conditions, if only the substrate is heated, as
discussed in section 2.
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Figure 3. Frequency shift γx from the fused silica surface. Theoretical predictions of the theory
[2] are shown for T = 0 K (dashed line), T = 300 K (solid line) and T = 600 K (dotted line). The
dash–dotted line is the extrapolation of the van der Waals–London 1/d3 potential. From [12].
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Figure 4. Schematic diagram of the set-up for the measurement of the Casimir–Polder forces
using Bloch oscillations. From [13].

4.2. Measurement of small forces using Bloch oscillations

In the experiments described in the previous subsection, the Casimir forces were measured
using oscillations of atoms near the surface in real, coordinate space. Here, we will discuss
the possibility of sensitive measuring of forces by observation oscillations in momentum
space, namely, the Bloch oscillations of atoms in a periodical optical lattice. The scheme
of the experiments is presented in figure 4. A sample of ultracold atoms is trapped in a 1D
optical lattice aligned with gravity. A vertical harmonic potential is presented and horizontal
confinement is provided by the same laser beam as the lattice. As soon as the vertical
confinement is switched off, the atoms start to perform the Bloch oscillation in the lattice under
the action of gravity. The quasi-momentum q evolves according to the equation h̄ dq/dt = mg

or q = mgt/h̄. However, all observable physical quantities, the momentum distribution in
particular, are periodic functions of q with the period equal to 2π/λ (λ is the wavelength of
the lattice). As a result, the momentum distribution oscillates with a well-defined period

TB = 2πh̄

mgλ
. (32)

The Bloch oscillations decay due to different processes, related to interaction between atoms.
This interaction, however, is very small for spin-polarized cold fermions. In experiments [23]
with atoms of 40K more than 100 periods of oscillations have been observed.

To measure momentum distribution, the atomic cloud was released from the lattice at
a given time. After 8 ms ballistic expansion, the spatial distribution of the cloud density
was measured by absorption imaging. This density distribution directly gives the momentum
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Figure 5. Momentum distribution of a Fermi gas performing Bloch oscillations in the gravitational
field for different times. Solid lines are experimental data and dashed lines are theoretical
calculations. From [13].

distribution at the beginning of the expansion. The evolution of the momentum distribution
is shown in figure 5. One can see the change from the initial monotonic distribution to the
characteristic two-peaks distribution at t = TB/2. Observation of many periods of oscillations
permits us to define the period with very high accuracy. As an example, the gravitational force
g was measured with five-digit accuracy [23].

To measure Casimir forces, one must bring a surface close to the atomic cloud. Then
the Casimir–Polder force F will shift the Bloch oscillation period. The shift in the first
approximation with respect to F is

�TB

TB

= − F̄

mg
(33)

where F̄ is the Casimir–Polder force, properly averaged over the volume of the cloud. Thus,
the force itself will be measured in these experiments, not the gradient of force as in [12]. The
effect will be of the order of 10−4–10−5, while one can expect to obtain an overall sensitivity
�TB/TB = 10−6–10−7 [13].

To obtain a good spatial resolution, it is important to have a small amplitude of spatial
oscillations. To reach this, the lattice height must be large enough.

4.3. Measurement of potential of the forces using a condensate in a double-well trap

A new possibility of measurements of small potential differences is opened by an atomic
interferometer with a Bose–Einstein condensate in a double-well potential [11]. In
this experiment, a condensate containing over 105 atoms of 23Na was trapped in a
double-well optical trap. This trap was formed by a collimated laser beam that passed
through an acousto-optic modulator and was focused onto the condensate with a lens (see
figure 6(a)). The AOM was driven simultaneously by two radio frequency signals with
frequencies f1 and f2. The separation between the potential wells was controlled by the
frequency difference |f − f2|. In this way, one can change the potential from single well
(figure 6(b)) to double well (figure 6(c)). The thickness of each focused beam was 5 µm. A
single isolated potential had depth U0 = 2πh̄ × 5 kHz, a radial trap frequency was 615 Hz
and axial one 30 Hz. The chemical potential of atoms was µ = 2πh̄ × 3 kHz.

Condensate was initially loaded into a single-well trap. After holding the cloud for
15 s to damp oscillations of the condensate, the trap was deformed in double-well potential.
Condensates realized from the double-well trap ballistically expanded, overlapped and
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Figure 6. Atom interferometer with Bose–Einstein condensates. (a) Schematic diagram of the
set-up and absorption image of two-well condensate. Energy diagrams for (b) initial single-
well trap with d = 6 µm and (c) final double-well trap with d = 13 µm and potential ‘dimple’
∼2πh̄ × 500 Hz. From [11].
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Figure 7. Interference of condensates released from the double-well potential in figure 6(c).
(a) Absorption image of expanded condensates. (b) Radial density profile. From [11].

interfered (see figure 7). The relative phase between the two separated condensates was
determined by the spatial phase of their interference pattern4.

The possibility of the measurement of the potential difference with this interferometer
is based on the Josephson equation for the time dependence of the phase of an individual
condensate φ = −iµt/h̄. If the condensates are placed in an external field with a potential
U(r) for a duration τp, they acquire a phase difference

φ = −i(Ū1 − Ū2)τp/h̄ (34)

where Ū1 and Ū2 are the potentials averaged over volumes of condensates. In the experiment
[11], the potential difference was created by pulsing off one of the wells for duration τp. To
use this interferometer for the measurement of the Casimir forces, one of the wells must be
moved to a small distance from a substrate surface [25]. After a duration τp, the condensate
can be moved away from the substrate and the acquired phase difference can be measured.

4 In the recent paper [26], authors developed a method of continuous non-destructive measurement of the relative
phase. The method is based on the phenomenon of the ‘interference in momentum space’, predicted in [27]. The
point is that the phase difference changes the momentum distribution of the two-well condensate. This distribution
can be measured continuously by observation of stimulated two-photon scattering of light by the system.
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However, practical realization of this idea demands a very high accuracy of the measurement
of the relative phase.
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